Vinogradov's mean value theorem via efficient congruencing

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vinogradov’s Mean Value Theorem via Efficient Congruencing

We obtain estimates for Vinogradov’s integral which for the first time approach those conjectured to be the best possible. Several applications of these new bounds are provided. In particular, the conjectured asymptotic formula in Waring’s problem holds for sums of s kth powers of natural numbers whenever s > 2k + 2k − 3.

متن کامل

Vinogradov’s Mean Value Theorem via Efficient Congruencing, Ii

We apply the efficient congruencing method to estimate Vinogradov’s integral for moments of order 2s, with 1 6 s 6 k − 1. Thereby, we show that quasi-diagonal behaviour holds when s = o(k), we obtain near-optimal estimates for 1 6 s 6 1 4k 2 + k, and optimal estimates for s > k − 1. In this way we come half way to proving the main conjecture in two different directions. There are consequences f...

متن کامل

Multigrade Efficient Congruencing and Vinogradov’s Mean Value Theorem

We develop a substantial enhancement of the efficient congruencing method to estimate Vinogradov’s integral of degree k for moments of order 2s, thereby obtaining for the first time near-optimal estimates for s > 5 8k . There are numerous applications. In particular, when k is large, the anticipated asymptotic formula in Waring’s problem is established for sums of s kth powers of natural number...

متن کامل

On Vinogradov’s Mean Value Theorem: Strongly Diagonal Behaviour via Efficient Congruencing

We enhance the efficient congruencing method for estimating Vinogradov’s integral for moments of order 2s, with 1 6 s 6 k− 1. In this way, we prove the main conjecture for such even moments when 1 6 s 6 1 4 (k+1) , showing that the moments exhibit strongly diagonal behaviour in this range. There are improvements also for larger values of s, these finding application to the asymptotic formula in...

متن کامل

An Inequality of Ostrowski Type via Pompeiu’s Mean Value Theorem

 (b− a)M, for all x ∈ [a, b] . The constant 14 is best possible in the sense that it cannot be replaced by a smaller constant. In [2], the author has proved the following Ostrowski type inequality. Theorem 2. Let f : [a, b] → R be continuous on [a, b] with a > 0 and differentiable on (a, b) . Let p ∈ R\ {0} and assume that Kp (f ) := sup u∈(a,b) { u |f ′ (u)| } < ∞. Then we have the inequality...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Mathematics

سال: 2012

ISSN: 0003-486X

DOI: 10.4007/annals.2012.175.3.12